Last edited by Kazuru
Saturday, July 18, 2020 | History

4 edition of role of microenvironment in axonal regeneration found in the catalog.

role of microenvironment in axonal regeneration

influences of lesion-induced changes and glial implants on the regeneration of the postcommissural fornix

by Christine C. Stichel-Gunkel

  • 371 Want to read
  • 37 Currently reading

Published by Springer in Berlin, New York .
Written in English

    Subjects:
  • Nervous system -- Regeneration.,
  • Axons.,
  • Neuroglia.,
  • Axons -- physiology.,
  • Nerve Regeneration.,
  • Tissue Transplantation.

  • Edition Notes

    Includes bibliographical references (p. 61-77) and index.

    StatementChristine C. Stichel-Gunkel.
    SeriesAdvances in anatomy, embryology, and cell biology ;, vol. 137, Advances in anatomy, embryology, and cell biology ;, v. 137.
    Classifications
    LC ClassificationsQL801 .E67 vol. 137, QP363.5 .E67 vol. 137
    The Physical Object
    Paginationviii, 81 p. :
    Number of Pages81
    ID Numbers
    Open LibraryOL664775M
    ISBN 103540627871
    LC Control Number97010368

    In the face of acute or chronic axonal damage, neurons and their axons undergo a number of molecular, cellular, and morphological changes. These changes facilitate two types of responses, axonal degeneration and regeneration, both of which are remarkably conserved in both vertebrates and invertebrates. Invertebrate model organisms, including Drosophila and C. elegans, have offered a .   Similarly, axon regeneration robustly occurs when PTEN is deficient in mouse cortical motor neurons, Drosophila sensory neurons, and Caenorhabditis elegans motor neurons. The melanopsin/GPCR (cell-type-specific G protein-coupled receptor) signaling enhances axonal regeneration of RGCs through promotion of mTORC1 signaling.

    Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. S.L. Carroll, S.H. Worley, in Reference Module in Neuroscience and Biobehavioral Psychology, Abstract. Wallerian degeneration refers to the well-orchestrated morphologic and biochemical changes that occur in axons, Schwann cells, and macrophages distal to a site of nerve injury, resulting in the establishment of a microenvironment supportive of axonal regeneration.

      Axon Regeneration in the CNS: Insights from the Optic Nerve Mst3b in optic nerve regeneration, the role of TNF-alpha in animal models of glaucoma, the role of inosine in . The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. (PMID PMCID:PMC) the main cause of impaired regeneration is the presence of factors that strongly inhibit regeneration in the surrounding microenvironment. These factors signal through the Rho/ROCK signaling pathway to.


Share this book
You might also like
Innovative thinking in risk, crisis, and disaster management

Innovative thinking in risk, crisis, and disaster management

face of London

face of London

causes of logging truck delays on two West Virginia logging operations

causes of logging truck delays on two West Virginia logging operations

Oscar Bluemner

Oscar Bluemner

registers of Denchworth co. Berks. 1540-1812

registers of Denchworth co. Berks. 1540-1812

household budget survey in the Gezira-Managil area.

household budget survey in the Gezira-Managil area.

Mechanics

Mechanics

Short internodes in western white pine

Short internodes in western white pine

Ad multos annos

Ad multos annos

Finding a place on the Asian stage

Finding a place on the Asian stage

Surprise warfare

Surprise warfare

A library of Fathers of the Holy Catholic Church, anterior to the division of the East and West

A library of Fathers of the Holy Catholic Church, anterior to the division of the East and West

Natural resources appraisal for land use planning in arid agro-ecosystem

Natural resources appraisal for land use planning in arid agro-ecosystem

Role of microenvironment in axonal regeneration by Christine C. Stichel-Gunkel Download PDF EPUB FB2

The Role of Microenvironment in Axonal Regeneration Influences of Lesion-Induced Changes and Glial Implants on the Regeneration of the Postcommissural Fornix Authors: Stichel-Gunkel, Christine C. The Role of Microenvironment in Axonal Regeneration Influences of Lesion-Induced Changes and Glial Implants on the Regeneration of the Postcommissural Fornix Authors.

The Role of Microenvironment in Axonal Regeneration Influences of Lesion-Induced Changes and Glial Implants on the Regeneration of the Postcommissural Fornix by Brand: Springer Berlin Heidelberg.

The Role of Microenvironment in Axonal Regeneration: Influences of Lesion-Induced Changes and Glial Implants on the Regeneration of the in Anatomy, Embryology and Cell Biology) by Christine C. Stichel-Gunkel.

Springer, Softcover reprint of the origina. Paperback. Used:Good. The role of microenvironment in axonal regeneration. Influences of lesion-induced changes and glial implants on the regeneration of the postcommissural by: 1. The Role of Microenvironment in Axonal Regeneration.

por Christine C. Stichel-Gunkel. Advances in Anatomy, Embryology and Cell Biology (Book ) ¡Gracias por compartir. Has enviado la siguiente calificación y reseña. Lo publicaremos en nuestro sitio después de haberla : Springer Berlin Heidelberg.

Cite this chapter as: Stichel-Gunkel C.C. () Aims of the Study. In: The Role of Microenvironment in Axonal Regeneration. Advances in Anatomy Embryology and Cell Biology, vol E-Mail Address.

Password. Forgotten Password. Remember Me. Myelin proteins in the adverse microenvironment inhibit the axonal regeneration through the RhoA-ROCK pathway.

They are also involved in the process of NSCs differentiation, by promoting the differentiation of NSCs into the glial lineage and inhibiting their differentiation into neuronal lineage via the mTOR-STAT3 pathway [ 2 ]. The microenvironment in which a tumor originates plays a critical role in its initiation and progression.

Tumor Microenvironment reviews the importance of tumor microenvironment in cancer management. Particular emphasis is placed on discussing how the unique characteristics of the tumor microenvironment not only impact disease progression and response to conventional anticancer.

The book Axonal Regeneration in the Central Nervous System is the book to have for those interested in spinal cord injury and axonal regeneration in general. Eventually, perhaps 50 years from now, this book may become the framework for a Foreword of a new book, documenting the important steps and the thinking that led to Superman really walking.

The role of microenvironment in axonal regeneration: influences of lesion-induced changes and glial implants on the regeneration of the postcommissural fornix Author: Christine C Stichel-Gunkel.

The role of microenvironment in axonal regeneration: influences of lesion-induced changes and glial implants on the regeneration of the postcommissural fornix. [Christine C Stichel-Gunkel] -- Since the pioneering studies of Ramon y Cajal the inability of lesioned adult CNS axons to regenerate.

Peripheral axon injury initiates a regenerative response that is absent in CNS axons. Mahar and Cavalli describe the mechanisms that initiate.

The tumor microenvironment (TME) consists of extracellular matrix proteins, immune cells, vascular cells, lymphatics and fibroblasts.

Under normal physiological conditions, tissue homeostasis protects against tumor development. However, under pathological conditions, interplay between the tumor and its microenvironment can promote tumor initiation, growth and metastasis. Pía M. Vidal graduated in Bioengineering with specialization in Cellular and Molecular Biology at the University of Concepción, Chile.

Currently she is a Ph.D. student in the Dept. of Morphology at Hasselt University, Belgium. Her research interests include the role of anti and pro- inflammatory cytokines in spinal cord regeneration, as well as the effect/modulation of the immune system in.

Where, nerve growth factor (NGF) is one of the most important biological active substances in the nervous system, which plays a decisive role in promoting the proliferation and differentiation of neurons, regulating central and peripheral neuronal survival and accelerating axon regeneration (Aloe.

This regeneration-promoting effect is efficiently blocked in SOCS3-gp double-knockout mice, suggesting that SOCS3 deletion promotes axon regeneration via a gpdependent pathway. Axon regeneration by adult mammalian neurons in the central nervous system was firmly established in the early s in elegant experiments carried out by Albert Aguayo, Sam David, Peter.

Role of Lipoproteins in the Delivery of Lipids to Axons during Axonal Regeneration* our studies support the idea that during axonal regeneration lipoproteins can be taken up by axons from the microenvironment and supply sufficient cholesterol, but not phosphatidylcholine, for growth.

Neuron Review Intrinsic Control of Axon Regeneration Zhigang He1,* and Yishi Jin2,3 * 1F.M. Kirby Neurobiology Center, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School, Longwood Avenue, Boston, MAUSA 2Section of Neurobiology, Division of Biological Sciences 3Howard Hughes Medical Institute University of California, San Diego, La Jolla, CA.Axonal regeneration Santiago Ramón y Cajal made several fundamental observations that have defined the perception of axonal regeneration in the central nervous system (CNS) of the past decades.

While during development and in the peripheral nervous system, regeneration of nerve fibers does occur, in the adult CNS they do not regenerate.Revealing essential roles of the tumor microenvironment in cancer progression, this book focuses on the role of hematopoietic components of the tumor microenvironment.

Further, it teaches readers about the roles of distinct constituents of the tumor microenvironment .